

明らかになってきた光合成のしくみ —C3植物での例を中心に—

活性酸素(ROS)生成抑制のための巧妙な分子メカニズムを備えたC3型光合成の進化

古谷吏侑,三宅親弘

キーワード:酸化障害,光合成電子伝達反応,活性酸素,光呼吸,P700酸化

光合成は、光エネルギーを化学エネルギーに変換し、大気中の二酸化炭素(CO₂)を有機化合物へ固定し、糖を生成する

How Photosynthesis is Carried Out?:The Well-Established Molecular Mechanism to Suppress the Production of Reactive Oxygen Species Piur EURUTANI Chilephine MIXAKE 袖口士登農受研究科

Riu FURUTANI, Chikahiro MIYAKE, 神戸大学農学研究科

反応である.しかし,光エネルギーを化学エネルギーへ変換 する光合成電子伝達反応は,常に活性酸素種(ROS)生成の 危険性を伴う.ROSは,光合成器官に酸化傷害を与えるこ とで,光合成活性ならびに生育を大きく低下させる.近年, 植物は光合成電子伝達反応におけるROS生成を抑制するメ カニズム—P700酸化システム—を備えていることが明らか となってきた.本稿では,C3植物において"P700酸化"を 担う分子メカニズムについて紹介する.

はじめに―酸素と光合成―

現在,地球の大気には約21%の酸素(O₂)が含まれ ている.ヒトを含む好気性生物が生存していくなかで, 生体エネルギーであるATP生合成の際の呼吸における 電子受容体として,また細胞内のさまざまな反応の基質 として,O₂は必須である.単にO₂と言うと,大気中の O₂のうち99%以上を占める三重項酸素分子(³O₂)を指 すが,この三重項酸素分子は他の分子と比べ少し変わっ た性質をもつ.2つ以上の原子同士が結合する際には, 原子同士の電子軌道が組み合わさり,分子が生成する際 に新たな電子軌道が生み出され,それぞれの原子がもつ 電子はこれらに再分配される.生体分子を含む多くの分

日本農芸化学会

大学が生物

◇◇◇ コ ラ ム ◇◇◇

本稿では、主に被子植物のなかでもC3植物に焦点 を当てているが、C3植物からさらに進化を遂げたC4 植物が地球上には存在している.このC4植物は、同 一祖先から進化した植物種ではなく、さまざまなC3 植物種から共通の方向性をもって独立的に進化した とされる「P. D. Moore: Nature 295, 647 (1982)]. C4 植物は、共通して葉肉細胞においてCO2を一時的に オキサロ酢酸として固定し、一連の反応を通じて維 管束鞘細胞に存在する Rubisco 周辺に CO2を放出する C4回路を有する、大気中のCO₂を固定することによ り、炭素数3の3-ホスホグリセリン酸を生成する植物 (C3植物)に対し、炭素数4のオキサロ酢酸を生成す ることが、C4植物と呼称され、分類される所以であ る. C4回路の反応速度はRubiscoによるCO₂同化反 応速度(カルボキシラーゼ反応速度)よりも速く、結 果としてRubisco周辺に供給されるCO2は大気に比べ 濃縮される.これによりC4植物ではRubiscoへの CO。供給のための気孔の開口を最低限に抑えることが でき、乾燥に対して耐性をもつ、C4植物では、 Rubisco 周辺でのCO₂分圧を高く保つことで光呼吸 (Rubiscoによるオキシゲナーゼ反応)の活性を抑制 している. また, Rubiscoの酵素活性自体も大きく変

日本農芸化学会

レ牛物

デ

化しており、CO2固定反応の触媒速度が大きく向上 している、このC4植物の形質は、農業的観点から重 要視され、主要農作物のなかでC3植物であるイネや コムギのC4化を目指した研究が盛んに行われている. しかしながら、われわれの研究により、C3植物にお ける光呼吸の生理的意義とその重要性が明らかと なってきた(本文参照).光合成にとって都合の良い 環境であれば、確かにC4型光合成を取り入れること で光合成効率の上昇は見られるかもしれない. しか しながら、さまざまな環境要因が存在し、それらが 複雑に入り組みながら変化する野外環境においては、 光合成にとって都合の良い環境はごくまれにしか訪 れない. その点を考慮すると、野外環境における、 光呼吸による光合成電子伝達系の保護の恩恵は無視 できないと考える.農作物の増産を考えるうえでは、 光合成の最大能力を向上させる取り組みも重要では ある.しかし、一方で環境ストレスによる減収を削 減することも、 増産に向けた重要なアプローチであ る.本稿で紹介する光合成電子伝達系でのモデルの 理解は、ストレス応答のメカニズムの理解と、その 応用に必須である.このコラムおよび本文を通じて. 植物の光合成と農業への利用に興味をもっていただ けたら幸いに思う.

図1■三重項酸素分子(³O₂)の電子軌道と、 活性酸素種(ROS)生成の概要図

子では、最高被占軌道(HOMO: Highest Occupied Molecular Orbital)において不対電子をもたないように電 子が分配される一重項状態が最も安定な状態である。し かしながら、O₂分子では電子の数や結合への関与の影 響により、2つの不対電子をもつ状態(三重項状態)を とることで電子運動範囲が拡大し、一重項であるよりも 安定になる(図1).したがって、それぞれの軌道のい ずれかに電子を受け入れようとする高い求電性を示しな がらも,そのためのエネルギーを要するために,一重項 状態の生体分子を無作為に酸化する可能性は低い⁽¹⁾.

今でこそ大気中に豊富に存在するO₂であるが,およ そ30億年前の地球には現在の約100分の1のO₂しか存 在していなかった⁽²⁾.当時の光合成生物は,有機酸や硫 化水素などを電子供与体とし,光合成反応を行ってい た.しかし,地球上に無尽蔵に存在する水を電子供与体 とし,副産物としてO₂を発生する光合成を行うシアノ バクテリア(ラン藻)の誕生以降,地球上のO₂濃度は 徐々に上昇していき,O₂を利用することでそれまでの 20倍近くのエネルギーを呼吸により得ることができる 好気性細菌が進化していった.後にシアノバクテリアや 好気性細菌は真核生物に共生し,それぞれ葉緑体・ミト コンドリアとして,その後の生物の進化に大きく寄与し た.このように,O₂発生型の光合成様式の誕生とそれ による大気へのO₂の供給は,地球史から見ても重要な 出来事であった.

しかし、光合成反応を考えるうえで "O2を発生する 光合成"は、リスクの大きいものであったと言える、先 ほど述べたように、Ooは安全かつ好都合な性質をもち 合わせている一方で、危険な側面ももち合わせる. 三重 項酸素は、一重項の分子とは容易に反応しないものの、 不対電子を一つ有する(二重項)ラジカル分子に付加し ペルオキシド (-OO-あるいは-OOH), さらに, 酸化還 元電位の低い化合物により一電子還元され、スーパーオ キシドラジカル(O₅)となる。O₅は、自発的不均化反 応により過酸化水素(H₂O₂)となり、さらにH₂O₂は フェントン反応により最も反応性が高いヒドロキシラジ カル (•OH) を生成する. これらO₅, H₂O₂, •OHは, 三重項酸素と比べ高エネルギー状態であるために高い反 応性を示し、DNA やタンパク質、脂質といった生体内 分子を無作為に酸化することから、"活性酸素種 (ROS: Reactive Oxygen Species)"と呼称される (図1).

光合成電子伝達反応では、太陽光のエネルギーを吸収 し、水分子を酸化することにより"電子"を抽出し、 CO₂同化のための化学エネルギー化合物を生成する(詳 細は後述する).そこでは、電子伝達体の酸化還元電位 の差を利用して電子を伝達する反応が進行する.光エネ ルギーを吸収する2つの光化学系タンパク質複合体内の 電子伝達体の酸化還元電位はおよそ-1,200~-600mV であり,⁽³⁾ O₂からO₂が生成する際の酸化還元電位(およ そ-300mV)を下回る.つまり,酸化還元電位の低い 電子伝達体が還元状態で蓄積する状況では,容易にO₂ が一電子還元され,ROSであるO₂が生成する⁽⁴⁾.この ように,光合成電子伝達反応は常に,ROSによる酸化 障害のリスクが高いといえる.しかしながら,私たちの 身の回りで健康に生育している植物や作物を見ている と,ROSによる酸化障害を回避するメカニズムを進化 の過程で獲得し,今日まで生きぬいてきたことが容易に 想像できる.

以降の項では、まず、酸素発生型光合成を行うC3植物の"光合成のしくみ"を説明したのち、実際に光合成 電子伝達系でO₂が還元されROSが生成すること、そし てその蓄積が酸化障害を与えることを紹介する.つま り、O₂発生型光合成生物は予想どおり非常に危険な状 況を伴いながら光合成の営みを行っていることを示す. 一方で植物はROS生成そのものを抑制できるシステム "P700酸化システム"を有していることを概観する.さ らに、最新の研究から明らかになったC3植物における "光合成のしくみ"が"P700酸化誘導のメカニズム"を 解明するカギとなったことを紹介する.本稿では、これ まで未解明であった"P700酸化"の全容を紹介し、C3 植物での安全な光合成の進行を達成するための制御メカ ニズム、またそれらと進化の繋がりや今後の展望につい て紹介したいと思う.

酸素発生型光合成の概要

まずは酸素発生型光合成の概要を記す(図2).光合成は,葉緑体チラコイド膜上で行われる光合成電子伝達

図2■C3植物における、酸素発生型光合成の概要図

日本農芸化学会

デポイキを

反応と、それにより生成された化学エネルギーを用いて 糖生成のための初期代謝物質を生成する反応系に大別さ れる.後者の反応としては、カルビン・ベンソン・バッ シャム回路(CBB回路)によるCO2同化と、CBB回路 およびC2サイクルによる光呼吸代謝系があり、いずれ もCBB回路の過程で、糖類を生成するためのトリオー スリン酸(TP)を抽出し、細胞質へ輸送する.

まずは光合成電子伝達反応の概要を説明する. 葉緑体 内のチラコイド膜には,光合成電子伝達反応にかかわる タンパク質が存在している.光合成電子伝達反応の始ま りは,光化学系II(PSII)で吸収された太陽光のエネル ギーによる,反応中心クロロフィルP680の光励起であ る.PSIIに存在する多数のクロロフィル分子は光エネ ルギーにより励起され,連鎖的に反応中心クロロフィル に光エネルギーを集め,P680をP680*へ励起する. P680*は高い還元力を有し,PSII内の電子伝達体を還元 したのち,酸化型となる(P680⁺).生成したP680⁺は, PSIIのMnクラスターを介して水を酸素分子(O₂)とプ ロトン(H⁺)へ酸化し,基底状態に戻る.

日本農芸化学会

デポノ 牛替

P680から生じた電子は、PSII内の電子伝達体を介し てプラストキノン (PQ) を還元する. PQが還元される 際,ストロマ側のH⁺が付加され,還元型PQ(PQH₂) が生成する.このように、P680は光酸化還元サイクル をするなかで、水を酸化し、PQを還元している. その 後、PQH₂は、シトクロム (Cyt) b₆f 複合体により酸化 され. このときチラコイド膜内膜(ルーメン)へH⁺が 放出される. PQH₂の酸化による電子伝達とH⁺の取り 込みは、Qサイクルという特殊な電子伝達方式(後述) により行われ、1電子に対して2H⁺がルーメン側に取り 込まれる.水の光酸化とQサイクルによりチラコイド 膜ルーメンに供給されたH⁺は、ストロマ-ルーメン間 でのH⁺濃度勾配(ΔpH)を生み出す. ΔpHによるエネ ルギーを利用し、チラコイド膜に存在するATP合成酵 素によりATP合成が行われる. Cvt baf複合体は、続け てプラストシアニン (PC) へ電子を伝達する. ここま で、H⁺の取り込みによるATP合成のために電子を伝達 してきたが、電子の伝達は酸化還元電位の差を利用し、 還元力の高いものから低いものへと行われる. すなわち 伝達の過程で還元力が少しずつ減少していき、PCでは NADP⁺を最終産物であるNADPHへ還元するための還 元力が失われている. そこで、もう一つの光化学系であ る光化学系I(PSI)において再度光エネルギーを吸収 するとともに高い還元力をもつ物質を生成する. PSIで もPSII同様、その反応中心クロロフィルP700が光酸化 還元サイクルをとることで、電子を伝達する. 基底状態 のP700は、光エネルギーを受け取って励起され、励起 P700(P700*)はPSI内の電子伝達体に電子を渡したの ち酸化型(P700⁺)となり、PCからの電子を受け取っ て基底状態へ戻る。P700*から放出された電子は、次い でフェレドキシン(Fd)へと伝えられ、Fd-NADPレダ クターゼ(FNR)を介してNADPHを生成する。光合 成電子伝達反応では以上の一連の反応により、CO₂同化 および光呼吸を駆動するための化学エネルギーである ATP.NADPHおよび還元型Fdを生成する。

一方CO₂同化は、CBB回路の初発反応であるリブ ロース-1,5-ビスリン酸(RuBP)カルボキシラーゼ/オ キシゲナーゼ(Ribulose-1,5-bisphospate carboxylase/ oxygenase; Rubisco)によるRuBPのカルボキシル化に 始まる. CBB回路の代謝中間体であるRuBPは、Rubiscoのカルボキシラーゼ反応よりCO₂を付加され、2分子 の3-ホスホグリセリン酸(PGA)へと変換される.そし てPGAからRuBPを再生産する際に、電子伝達系で生 成されたATPおよびNADPHが利用される.

一方で、大気条件下(40Pa CO₂/2kPa O₂)では、 RubiscoはRuBPのカルボキシラーゼ反応と同時に. RuBPのオキシゲナーゼ反応を競合的に触媒する. RuBPのオキシゲナーゼ反応では、1分子のPGAと1分 子の2-ホスホグリコール酸(2-PG)が生成する.この 2-PGはCBB回路に直接利用できないために、ペルオキ シソームやミトコンドリアを通じたC2サイクルにより, PGAとして再生産することで"炭素源"を回収する。こ のC2サイクルでは、光合成電子伝達反応により生成し た還元型のFdやATPが利用され、2-PGの一部の炭素は CO₂として放出されるが、再度Rubiscoによるカルボキ シラーゼ反応により、PGAへと固定される. この一連の 反応系はO2を吸収しCO2を放出するため、"光呼吸"と 呼称される.本稿では、光呼吸とは独立して機能する、 CBB回路によるCO₂同化反応系を "CO₂同化", Rubisco のオキシゲナーゼ反応を初発としたC2サイクルによる PGAの再生産、およびC2サイクルの副産物であるCO₂ を捕捉し、Rubiscoのカルボキシラーゼ反応によって同 化する反応を総じて"光呼吸"と定義する. 前述のとお り, Rubiscoのカルボキシラーゼ/オキシゲナーゼ反応 は互いに競合しており、CO₂/O₂分圧比に依存してこれ らの反応比が決定される. 植物種によるが、イネやコム ギなどのC3植物では、大気条件(CO₂ 40Pa, O₂ 21 kPa) でのカルボキシラーゼ/オキシゲナーゼ反応はおよそ 3:1の割合で同時進行している. すなわち、21kPa O2の 大気条件下では、CO2同化と光呼吸が同時に進行する.

C3植物での光合成のしくみ~光合成電子伝達反応 とCO2同化/光呼吸の強固な関係~

酸素発生型光合成の概要は上に示したとおりである が、その詳細なモデルに関しては現在も盛んに議論が行 われており、まだその全容は明らかになっていない部分 が多い.しかしながら、われわれは、光合成電子伝達反 応とCO₂同化/光呼吸が"密なカップリング"による強 固な関係を築いていることを、明らかにすることができ た^(6, 6).以下では、コムギやシロイヌナズナ、ヒマワリ、 タバコなどの主要なC3植物において観測されてきた、 "密なカップリング"の下光合成が機能していることを 示す実験事実を紹介する(図3).

1. [事実1] (図3a)

日本農芸化学会

大気条件下において、クロロフィル蛍光解析から求めたPSIIでの電子伝達速度(Jf)と、ガス交換解析から見積もられた、CO2同化/光呼吸による電子の消費速度(Jg)は原点を通る正の直線関係にある^(7~10).

$$Jf = Jg \quad (\mu mol m^{-2} s^{-1})$$
[1]

これは、光合成電子伝達系により供給されるほぼすべての電子がCO₂同化/光呼吸を駆動し、逆にCO₂同化/ 光呼吸がPSIIの電子伝達反応を駆動していることを意味する。

2. [事実2] (図3b)

=

PSIIにおける電子伝達反応速度と、ATP合成酵素に よるH⁺の利用速度(vH⁺)は原点を通る正の直線関係 にある⁽¹¹⁻¹⁴⁾.

 $kH^+ \times Jf = vH^+ \ (\mu mol m^{-2} s^{-1})$ [2]

$$gH^+ \times pmf$$
 [3]

 kH^+ は光合成電子伝達反応に伴う水の光酸化およびQサ イクルによるチラコイド膜ルーメンへのH⁺の蓄積にお ける見かけの速度定数、gH⁺はATP合成酵素による ATP生成の見かけの速度定数であるH⁺コンダクタン ス,そしてpmf (proton motive force) は強光下では $\Delta pH を反映する.$ 光合成電子伝達反応によるストロマ からチラコイド膜ルーメンへのH⁺の取り込み速度(= $kH^+ \times Jf$)と,ATP合成酵素によるH⁺の消費速度(= $vH^+ = gH^+ \times pmf$)が等しいということは,CO₂同化/ 光呼吸によるH⁺の消費速度が,光合成電子伝達反応に よるストロマからルーメンへのH⁺取り込み速度と等し いことを示唆する.

3. [事実3] (図3c)

実際に, CO₂同化/光呼吸の両反応によるH⁺の消費 速度 (JgH⁺) と, ATP合成酵素によるH⁺流出速度 (vH⁺) は原点を通る正の直線関係にある⁽¹⁵⁾.

図3 C3植物における、光合成のしくみの概念図

a~fは、これまで得られた実験事実に基づいて作成した各光合成パラメーターの関係を示した概要図.gは,a~fの関係を等式で表したものと、各要素をモデル図に当てはめて示したものである.Furutani *et al*.: 2020⁽⁶⁾ および Miyake: 2020⁽⁵⁾ より改編.

 $JgH^{+} = vH^{+} (\mu mol m^{-2} s^{-1})$ [4]

$$= gH^+ \times pmf$$
 [5]

JgH⁺は,ATP合成のためのADPの再生産速度と見る こともできる.すなわち,CO₂同化と光呼吸による ATP消費効率が,ATP生成速度を決めているというこ とであり,逆もまたしかりである.

等式 [2], [4] より

$$kH^+ \times Jf = JgH^+$$
 [6]

という関係が成り立つ.これは,光合成電子伝達反応に よるストロマからルーメンへのH⁺の取り込みが最終的 なH⁺の消費速度を決定しており,逆もまたしかりとい うことである.

4. [事実4] (図3d)

CO₂同化および光呼吸による電子の消費速度(Jg)と H⁺の消費速度(JgH⁺)は原点を通る直線関係にあ る^(15~17).

$$kJg \times Jg = JgH^{+}$$
^[7]

kJgは見かけの速度定数である.実際にJgH⁺とJgの商 から求めるkJgは、大気条件におけるCO₂飽和点と補償 点の間で5~10%ほどの差があるが、ここでは定数とし て取り扱うこととする.この等式は、CO₂同化および光 呼吸による電子の消費速度が、これらによるH⁺の消費 速度を決定しており、逆もまたしかりということであ る.

5. [事実5] (図3e)

PSIIでの電子伝達速度と,Fdの酸化還元速度は原点 を通る正の直線関係にある⁽¹⁸⁾.

 $Jf = vFd \quad (\mu mol m^{-2} s^{-1})$ [8]

$$= \mathbf{k} \mathbf{F} \mathbf{d} \times \mathbf{F} \mathbf{d}^{-} \quad (\mu \operatorname{mol} \mathbf{m}^{-2} \mathbf{s}^{-1})$$

kFdは還元型Fd(Fd⁻)の酸化反応における,見かけ の速度定数である.等式[8]および[9]は,Fdの酸 化還元反応速度が,PSIIでの電子伝達速度により決ま ることを示す.また等式[1]から,CO₂同化/光呼吸 が,Fdの酸化還元速度を決定していることを示してい る.

6. [事実6] (図3f)

PSIIでの電子伝達活性とクロロフィル蛍光解析に

よって見積もられるPQプールの還元状態(1-qLという パラメータで評価する)は、負の線型関係にある^(19, 20).

$$Jf = kqL \times (1-qL)$$
[10]

kqLは還元型PQの酸化反応における見かけの速度定数 である.すなわち,還元型PQの酸化反応速度がPSIIの 電子伝達速度を決定するということを示すと同時に, kqLを制御することで,PSIIでの電子伝達が調節されう ることを示す.

ここまでの等式を整理すると以下のような関係が得ら れる(図3g).

電子の関係

 $Jf = kqL \times (1-qL) = kFd \times Fd^{-} = Jg$

プロトンの関係

 $kH^{\scriptscriptstyle +} \times Jf = gH^{\scriptscriptstyle +} \times pmf = vH^{\scriptscriptstyle +} = kJg \times Jg = JgH^{\scriptscriptstyle +}$

光合成電子伝達反応での電子およびH⁺の生成と、CO₂ 同化/光呼吸による電子およびH⁺の消費は,ほぼ完全 な相互依存関係にある. すなわち, 光エネルギーを吸収 する光合成電子伝達反応と、酵素反応によるCO₂同 化/光呼吸は、"密にカップル"して進行していること を示し、電子とH⁺のいずれに対してもIf(=Jg)を介 して一つの等式に落とし込むことができる.この"密な カップル"がゆえに、一つの要素がストレスや制御によ り変化すれば、その他すべての要素にも影響を及ぼす、 このことは、CO2同化/光呼吸の抑制が光合成電子伝達 反応の滞りに直結することを示している。光合成電子伝 達反応が滞ることは、酸化還元電位の低い電子伝達体が 還元状態で保たれることを意味し、O2と反応すること によるROS生成の可能性が大きく上昇する.次の項で は、光合成電子伝達系でのROS生成メカニズムに関し て説明する.

光合成のしくみは必然的にROS生成の危険を伴う

前章で説明したとおり,光合成電子伝達反応とCO₂ 同化/光呼吸はATP,NADPHそしてFdを通じた密接 な関係にある.吸収した光エネルギーにより生成した ATP,NADPHおよび還元型FdがすべてCO₂同化や光 呼吸の代謝により消費されるよう,これらの活性を光合 成電子伝達反応の活性より十分大きく保つことができれ ば,無駄のない安全な光合成が進行する.しかしなが ら,常に変化していく野外環境においては,そのような 理想的な光合成は不可能に近い.実際に,ガス交換解析

日本農芸化学会

によりCO₂同化速度を測定すると、その速度は太陽光の 4分の1から2分の1程度の光強度のもとで飽和してしま い、日中の晴れ間などでは植物に過剰な光エネルギーが 供給されていることがわかる⁽²¹⁾.また、乾燥条件では、 蒸散を通じた植物体内の水の損失を防ぐために気孔を閉 じる.しかし、気孔を閉じることは同時に、生葉への CO₂の取り込みが抑制されることになり、結果的にCO₂ 同化の効率は低下してしまう^(22, 23).高/低温ストレス においては、CO₂同化や光呼吸代謝に関与する酵素群の 活性が変化し、これらの反応系による光エネルギー利用 効率の低下が生じる⁽²⁴⁾.

これらの環境ストレスに共通するのが,光合成電子伝 達系に供給される光エネルギーに対して,CO₂同化およ び光呼吸による光エネルギー利用効率が低くなってしま うという点である.前章で紹介したとおり,光合成電子 伝達反応とCO₂同化/光呼吸は密にカップルして進行 する.すなわち,CO₂同化/光呼吸による光エネルギー 利用効率の低下は同時に,光合成電子伝達反応の滞りに よる,光合成電子伝達系への電子の蓄積の可能性が高ま ることを意味する.

では光合成電子伝達系に電子が蓄積することはどのよ うな意味をもつのか.近年、われわれは光合成電子伝達 系への電子の蓄積がもたらす影響を実験的に観測するこ とに成功した⁽²⁵⁾. そのなかで用いられたのが、Sejima らによって開発されたrSP (repetitive short-pulse) 法 である.rSP法では、暗順応させた葉に、暗黒下におい てCBB回路の活性化が生じないほどの短い飽和光パル ス (SP: Saturated pulse, 300 ms, 10,000–20,000 µmol photonsm⁻²s⁻¹) を10秒おきに照射する. SP照射直後, P700光酸化還元サイクルが駆動し、一過的にP700+が 蓄積する.しかしながら. PSIIから際限なく電子が伝 達される、一方で、PSIからの電子を利用する CBB 回路 は、暗黒下で駆動しないため、PSI内に電子が蓄積し、 P700⁺は減少していきやがて励起型のP700*が蓄積する (図4a). rSP処理を施した葉では、処理時間に応じて PSIの最大電子伝達活性が大きく低下した. この方法に よるPSI失活は、ROS生成の基質となるO₂を大気の 1/10に下げた2kPa O2環境下で緩和される. すなわち, 電子伝達系における電子の蓄積は、ROSの生成による PSI失活を引き起こしうるということを強く示唆した. また, rSP処理により一度PSIを失活させてしまうと, 処理後のCO2同化速度が低下したことから、PSIの失活 は生育にも大きく影響することが示唆された⁽²⁵⁾.

CO₂同化や光呼吸によるPSIで生成した電子の消費が 行われない状況で、PSIIから電子が供給され続けると、

図4■PSIにおける活性酸素生成メカニズムの概念図

(a) 暗所下での飽和光パルス (SP) 照射時の, P700⁺の変化. Sejima *et al.*: 2014⁽²⁵⁾ より改編. (b) SP 照射中の ROS 生成メカニズ ムの概念図.

PSI内の電子伝達体 (A_0 , A_1 , F_X , F_A/F_B) やFdが還元 状態となる. これらの電子伝達体は,酸化還元電位が低 く, $O_2 \varepsilon O_2^- \sim c$ 還元してしまう^(4, 26~28). この O_2^- は自 発的不均化により H_2O_2 となり(メーラー反応),また H_2O_2 が,遊離あるいはタンパク質に結合する Fe^{2+} や Cu^{2+} などと反応する(フェントン反応)ことにより, ・OHが生成する(図1,4b). これらのROSによりPSI は酸化的に失活し,CO₂同化能や生育に多大な被害が生 じる^(25, 29, 30).

野外環境において常に存在するさまざまな環境ストレ スは、CO₂同化能を抑制し、光合成電子伝達系に電子が 蓄積する危険性を高める.しかしながら、窓の外を覗く と多くの植物が活き活きと生育する姿が目に入る.昨今 の気候変動や夏場の強い太陽光、雨が降らない日が暫く 続いたところで植物は健康に生きている.このことは、 植物が電子の蓄積によるROSの生成を防ぐための、頑 健な防御システムを備えていることを示す.

日本農芸化学会

分拟子牛替

PSI光阻害抑制のための分子メカニズム

われわれはこれまで、PSIの反応中心クロロフィル P700が酸化されることによるROS生成抑制メカニズム を見いだし,独自の"P700酸化ワールド"を展開して きた.Sejima et al. 2014⁽²⁵⁾では、光合成を駆動する作用 光(Actinic light; AL)の照射によりP700酸化を誘導し た状態でrSP照射処理を行っても、PSIの光阻害がほと んど起こらないことを示した.また、強光・乾燥などの 環境ストレス条件下では共通して、P700の酸化が観測 される^(31~36).これらの事実は、ストレス応答としての P700酸化とPSI光保護の頑健な関係を示唆する.

ではP700が酸化されることにどういう意味があるの か.酸素発生型光合成の概要の項で述べたように、 P700はPSI内で図3のような光酸化還元サイクルを行っ ており、基底型(P700)・励起型(P700*)・酸化型 (P700⁺)の三態のいずれかで存在する(図3).暗黒下 でのrSP照射処理の例では、CBB回路による電子の消 費が起こらないために、SP照射中のP700光酸化還元サ イクルの律速点はP700*→P700⁺の反応となっており、 SP照射の間P700*が蓄積した(図4a).同様に定常光下 においてP700が酸化することを考えると、P700酸化還 元サイクルの律速点はP700⁺→P700となる.すなわち、 P700光酸化還元サイクルの律速点がP700⁺→P700にな るような制御が機能すれば、P700*の蓄積は抑えられ、 ROS発生の場であるPSIでの電子の蓄積は解消される (図5a).これがP700酸化の本質である.

日本農芸化学会

ションチキャ

P700*→P700の反応速度を決定するのは, CO₂同化お よび光呼吸による電子利用効率である.一方, P700⁺ →P700の反応速度を決定するのはPSIIからの電子伝達 速度である.反応の律速点を後者に遷移させ, P700酸 化を誘導するためには, CO₂同化や光呼吸による電子の 利用効率の低下と同時に, PSIIからの電子伝達反応を それ以上に抑制する必要がある.PSIへ流入する電子を 制御するメカニズムとして,現在,以下の2つが知られ ている.

ーつはチラコイド膜ルーメンの酸性化 (≅ ΔpH形成 促進)による制御である^(16, 37, 38).電子伝達反応に伴う ストロマからルーメンへのH⁺の取り込みとCO₂同化/ 光呼吸によるH⁺の消費の比が変化することにより,チ ラコイド膜ルーメンにH⁺が蓄積する (ΔpHの形成が促 進される)と,PSIIにおける非光学的消光 (NPQ)が 誘導され,PSIIで吸収したエネルギーを安全に熱エネ ルギーとして放散する.このことにより,光合成電子伝 達系への光エネルギーの分配を削減する.またルーメン の酸性化により、還元型PQのCyt b₆f複合体による酸 化反応活性の低下、つまり光合成電子伝達活性が低下す る. ΔpHの形成はこれらを通じてPSIへ流入する電子を 抑制し、P700の酸化に寄与する.

もう一つは、PQの過還元化により誘導されるPQ-Cyt $b_{6}f$ 複合体間での電子伝達効率の抑制(RISE: Reduction-Induced Suppression of Electron flow)である^(20, 39, 40) (図5b). 還元型のPQ(PQH₂)からCyt $b_{6}f$ 複合体への 電子伝達はQサイクルという特殊な様式によって行わ れる. これは、PQH₂から放出された2つの電子のうち、 一つはPCに、もう一つはCyt b_{6} 内の2つのヘム b_{L} 、 b_{H} を介して酸化型のPQに戻され、再度PQH₂を生成する という反応様式である、PQプールが過還元状態となる と、このQサイクルの基質となる酸化型のPQが減少す る. その結果としてQサイクルの反応効率全体が抑制 され、PQ以降の電子伝達反応が抑制されることにより、 P700酸化に寄与する.

上記の2つのメカニズムを介して、主にCyt bd 複合

図5 **■ PSI** における活性酸素種生成の抑制メカニズムの概念図 (a) PSIでのROS生成を抑制するP700酸化システムとその誘導メ カニズムの概念図. (b) RISE (Reduction-induced suppression of electron flow) による,電子伝達制御メカニズムの概念図.

図6 ■ 環境ストレス下でのΔpHによるP700酸化 誘導メカニズムと, RISEによるP700酸化誘導メ カニズム

CO₂同化が,ある光強度下での最大活性を示してい る時(上図)に対し,環境ストレスなどにより抑制 された際の光合成反応の変化を示す等式と概要図. (a),(a')乾燥ストレスなど,CO₂同化のみが抑制 された際のP700酸化誘導メカニズム.(b),(b')低 温ストレスなど,CO₂同化に加えて光呼吸も抑制さ れた際の,P700酸化誘導メカニズム.

体において、PSIへと流れ込む電子が絞り込まれる. その結果としてP700が酸化し、PSIのアクセプター側の 過還元状態を回避している.しかしながら、CO2同化/ 光呼吸による光エネルギー利用効率が低下していないに もかかわらず、光合成電子伝達反応を抑制するメカニズ ムが働くと、単に光合成全体の効率が低下してしまう. したがって、環境ストレスによるCO2同化や光呼吸の 活性低下に"伴って"、上記の光合成電子伝達反応の抑 制メカニズムが誘導されるようなしくみになっていなけ ればならない.

PSI光阻害が観測される条件というのは、共通して CBB回路の活性化がほとんど起きていなかった.すな わち、上記に示した光合成電子伝達反応における制御に は、CO₂同化/光呼吸をはじめとする電子の消費反応と の相互作用が必要不可欠であるということを示唆する.

C3植物におけるP700酸化モデルと光呼吸~今,明 らかにされた光呼吸の機能~

P700酸化をもたらすには,主にCyt b_d 複合体での電 子伝達の絞り込みが必要であり,それにはΔpHの誘導 とPQの過還元化によるRISEの機能が必要であること は前章で述べたとおりであるが,ではどのようにして ΔpHおよびRISEが誘導されるのか.近年のわれわれの 研究では,ΔpHやRISEの誘導に光呼吸が関与すること を明らかにしてきた.

光呼吸は、O₂発生型光合成の項でも述べたように、 光合成電子伝達系で生成した化学エネルギー(Fd⁻, NADPH, ATP)および一度固定した炭素源を消費する 反応であり、その生理的意義は不明な点が多かった.光 呼吸がPSIIの保護に必要であるという報告があるが、 光呼吸がどのように光合成電子伝達系に干渉するのかに 関する詳しいメカニズムは明らかではなかった.

Sejima *et al.*, 2016⁽¹⁵⁾; Hanawa *et al.*, 2017⁽⁴¹⁾では, 植物体周囲のCO₂分圧が低下し, CO₂同化が抑制されるよ

328

日本農芸化学会

うな条件において、光呼吸が大きなエレクトロン・プロ トロン・シンクとして機能し、PSIIでの電子伝達速度 が保たれるという現象を見いだした.すなわち、Rubiscoのカルボキシラーゼ反応が抑制されると同時にRuBP オキシゲナーゼ反応が加速し、光呼吸が光合成電子伝達 反応を駆動することにより、Jgを維持する.また、 Wada *et al.*, 2020⁽¹⁷⁾では、光呼吸が機能することで、Jg の低下に対してgH⁺をより大きく低下させ、 Δ pH形成 を促進することを明らかにした(等式6).ここまでの 研究により、乾燥ストレスなどによりCO₂同化が抑制 されるような状況では、光呼吸が Δ pH形成を通じた P700酸化に大きく寄与していることが明らかとなった. このことは、先の等式の関係から理解することができる (図**6**a, a').

光呼吸はCO₂同化反応効率の低下にいち早く応答し、Jgを維持する.

日本農芸化学会

デポイキ替

- II. その一方で、gH⁺を大きく低下させることでΔpH 形成 (pmf) を促進する (等式 [3]). これは、光呼 吸代謝系はCO₂同化反応系に比べ、ATP/電子の消 費速度比が低いことによると考える.
- III. ΔpHによりNPQの誘導やCyt fの電子伝達活性が 抑制され, JfやkqLが抑制される.
- IV. 一時的にJf<Jgとなり、P700酸化が生じる.その 後、Jfの水準にまでJgが低下し、定常状態に達する. 一方RISEは、主に光呼吸とCO2同化速度を同時に抑 制する条件において、その機能が観測される.こちらに ついても、光呼吸同様にそのメカニズムを以下に示す (図6b, b').
- I. 光呼吸およびCO₂同化の両方が抑制されるような条件では、Jgが大きく低下することにより、電子伝達体が還元状態となる.
- II. このことにより、Qサイクル反応における、PQH₂ \rightarrow PCへの電子伝達経路が抑制されることでkqLが低 下する.
- III. kqLの低下により、PQの還元化が生じるが、PQ が過還元状態になるにつれ、RISEによるkqLのさら なる抑制が生じ、Qサイクル速度はさらに抑制され る.
- IV. 結果として、一時的にJf<Jgとなり、P700が酸化 されることにより再度安全な光合成反応が進行する.

光呼吸の役割を考えると, RISEはCO₂同化/光呼吸 による最大光エネルギー利用能力を超えるような強光 や,これら両方の活性が抑制されるような低温条件や栄 養障害,水没などのストレス条件で機能することが予想 される. これらのメカニズムに共通するのが、CO2同化/光呼 吸による光エネルギー利用効率が低下した際に、光合成 電子伝達反応をそれ以上に抑制し、光合成電子伝達反応 主体の光合成反応を行うよう調節するということであ る.これは先にも述べたように、電子伝達系のエネル ギーを余すことなくCO2同化/光呼吸で利用するとい う理想に近い光合成のあり方であり、安全な光合成の本 質である.実際に、光合成電子伝達反応の最終産物であ るNADPH生成のための電子供与体となるFdの酸化還 元状態を測定すると、CO2同化が抑制された際にも、変 わらず高い酸化状態で維持される.光合成電子伝達系 と、CO2同化/光呼吸による反応だけという、教科書的 とも言えるシンプルなモデルの中に、非常に巧妙で、な おかつ頑健なシステムが盛り込まれている.

見えてきた光合成のしくみと,実際の光合成~植物 の生き残り戦略の新視点~

先述のように、さまざまな実験事実に基づき、C3植物における"光合成のしくみ"が明らかとなってきた. しかしここまで紹介してきた観測事実のほとんどは、人 為的に植物体周囲のCO₂分圧を下げる、あるいは光強度 を変動させるなどの実験的操作に対する応答として得ら れたものであり、本稿に示したモデルはそれらに基づく ものである.したがって、常に変化し続ける野外環境で の光合成電子伝達活性、CO₂同化、光呼吸がこの"光合 成のしくみ"とおりの動きをするかどうかはわからな い.そこでFurutani *et al.*, 2020⁽⁴²⁾では、イネにおいて 観測される内在的なCO₂同化速度の変動の中で、光合 成反応がどのように応答するのかの検証実験が行われた (図7).

イネでは、一定の光環境下においても気孔の不安定な 開閉によりRubiscoへのCO₂供給が安定せず、内在的な 生理応答として、CO₂同化速度が変動する現象が観測さ れる.光呼吸は、このCO₂同化速度の変動に対し、CO₂ 同化速度の低下を埋め合わせるように反応速度を上昇さ せ、PSIIでの電子伝達速度(=Jg)を維持しているこ とが明らかになった.また、CO₂同化に対する光呼吸の 相対活性が上昇するにつれ、ΔpH形成が促進され、 P700酸化が生じることが明らかとなった.一方、光呼 吸が大きく抑制される低酸素条件(2kPa O₂)では、 CO₂同化速度とPSIIでの電子伝達速度がほぼ等しい値 で変動したにもかかわらず、P700酸化レベルは比較的 維持された.このP700酸化抑制が緩和されるフェーズ では、PQの還元状態が高く維持されていたことから、 RISEの機能が観測された.これらの結果は、すべて本 稿で紹介した光合成モデルにより説明することができ. ここまで紹介してきた光合成モデルとROS生成抑制の ための分子メカニズムが、植物のもつ内在的な生理現象 の中で機能することが初めて示された。また、Furutani et al. 2020⁽⁴²⁾で取り上げた,一定の光環境下での内在的 なCO2同化速度の変動現象は、気孔開度の変動により 生じることが同研究内で明らかとなったが、一定の光環 境下における気孔開度の変動は多くの植物種において報 告がなされている(43~45).また、気孔の不安定な開閉は、 道管や仮道管内に空気が充満することで生じる一時的な エンボリズム(塞栓症)との関係が示唆されており⁽⁴⁵⁾ 容易に野外環境で生じることが予想される. すなわち光 呼吸は環境ストレス条件下だけでなく,植物が普遍的に もつ内在的な生理現象の中でも重要な働きを担ってい る、C3植物が安全に光合成を行ううえで、光呼吸は環 境ストレスの有無によらず必須であると言えるであろ う.

P700酸化戦略の変遷~CO₂同化を優先させ, ROS 生成抑制を達成するC3型光合成への流れ~

ここまで,主にC3植物で見いだされてきた光合成モデルに関して紹介してきた.では,C3植物以外のO₂発生型光合成生物ではどうであろうか? 進化的にC3植

図7 ■ イネのCO₂同化速度の変動下における電子伝達反応の応 答の概要図

(a) 光呼吸が機能する大気条件 (21kPa O₂) での結果の概要図.
 (b) 光呼吸がほとんど機能しない低酸素条件 (2kPa O₂) での結果の概要図. Furutani *et al.*, 2020⁽⁴²⁾ の結果を元に作成.

物よりも前の光合成生物であるシアノバクテリアから緑 藻類、コケ類、シダ類および裸子植物までにはFLV (Flavodiiron protein) というタンパク質が広く保存さ れている. FLVにはClass AからClass Eまでの分類が あるが、ここではClass Cに分類され、基本構造のドメ インに加え NAD (P) H; Flavin oxidoreductase-like domainをもつものをFLVと呼称することとする⁽⁴⁶⁾. FLV は、FdあるいはNADPHを電子供与体とし、O2を水に 還元する. すなわち, 光合成電子伝達系の電子を消費す るエレクトロン シンクとして機能する. また, FLVは 電子伝達系で生成する ATP(=チラコイド膜ルーメン のH⁺)を消費しない反応であるため、ΔpHの形成を通 じたP700酸化に大きく寄与する^(47,48).実際に,FLVを 欠損させたシアノバクテリア (Synechococcus sp. PCC 7002) ではP700酸化をほとんど行うことができず、生 育が大きく阻害される⁽⁴⁹⁾.シアノバクテリアでは生育 に大きな影響を及ぼすFLVであるが、現在、陸上で最 も栄えている被子植物には、FLVは存在しない、すな わち、進化の過程で、植物はFLVを捨てたのだ. FLV はO2に対する親和性が非常に高く、非常に低いO2濃度 においてその活性が飽和してしまう. 植物の進化の中 で、RubiscoによるCO2同化や光合成電子伝達反応の能 力の向上に伴い、最大活性の低いFLVによる還元力消 費能力を上昇させるには、FLVを増やすほかなく、さ らなる窒素/炭素投資が必要となる.また,Rubiscoの 活性の向上に伴う光呼吸の発達により、これまで示して きたとおり、環境要因や内在的要因によるCO2同化効 率の低下に対する、光呼吸による頑健な光合成電子伝達 制御メカニズムが確立されたことで、FLVの必要性は 薄れていったと考える. Hanawa et al., 2016⁽⁴¹⁾では, 最 初の陸上植物であるコケにおいても光呼吸が十分に機能 し、シダ植物、裸子植物、被子植物(ここではC3植物) において、光呼吸の活性が増大している事実は、光合成 生物の陸上化と同時期に光呼吸がメインのP700酸化誘 導メカニズムとして要求されてきたと考察している.し かしながら、コケ植物が陸上進出を果たしたとされる4 億7500万年前には、CO2濃度が現在の大気レベルの15 倍近く存在していたとされている⁽⁵⁰⁾. CO2濃度が現在 の0.04% (40Pa) に近づいたのはおよそ3億年前で、こ の頃に裸子植物が誕生したとされている. 前述のとお り、RubiscoにおけるCO₂同化/光呼吸反応比はRubisco周辺のCO₂/O₂分圧比で決定される. すなわち、この 当時CO2濃度が大幅に絞られる(過度な乾燥ストレスな ど)以外には、光呼吸がほとんど機能しなかったことが 予想される、そのような環境下で、強光などのストレス

日本農芸化学会

ノ牛物

受け

に対しP700酸化に寄与していたのは、やはりRISEや FLVであったと予想される.このことが、コケから裸 子に至るまでの多くの陸上植物種においてFLVが保存 されている理由の一つであると考えられる.

おわりに

本稿では、最新の研究成果から明らかとなってきた光 合成モデルを紹介してきた.しかしながら、このモデル がすべての現象を包括しているわけではない.むしろ、 測定技術の進歩や新たな測定法の開発により、今後この モデルに当てはまらない、例外的な現象が観測されてく るであろう.しかしそれは憂えることではなく、この営 みを通じて光合成反応の真の姿が見えてくると考える. また、本稿ではC3植物における光合成モデルを紹介し てきたが、他の植物種を含めいまだ不明な点も多い.今 後、さらなる光合成研究の発展により、多様な光合成の 姿やその進化について明らかになっていくことを期待し

たい.

日本農芸化学会

謝辞:本総説で紹介したわれわれの研究は, JST CREST (グラント番号; JPMJCR1503, 三宅親弘)の助成を受けています. この場を借り て,深く御礼申し上げます. また,今回の解説の執筆に機会を与えてく ださいました日本農芸化学会殿,執筆にあたり助言をいただきました東 北大学 牧野周名誉教授,岩手大学 鈴木雄二准教授,京都大学 伊福 健太郎教授ならびに東京薬科大学 野口航教授,およびご査読いただき ました先生方に,厚く御礼申し上げます.

文献

- 1) 浅田浩二:化学と生物, 37, 251 (1999).
- 2) L. R. Kump: Nature, 451, 277 (2008).
- R. E. Blankenship & R. C. Prince: *Trends Biochem. Sci.*, 10, 382 (1985).
- S. Khorobrykh, V. Havurinne, H. Mattila & E. Tyystjärvi: *Plants*, 9, 91 (2020).
- 5) C. Miyake: Antioxidants, 9, 230 (2020).
- R. Furutani, K. Ifuku, Y. Suzuki, K. Noguchi, G. Shimakawa, S. Wada, A. Makino, T. Sohtome & C. Miyake: Adv. Bot. Res., 96, 151 (2020).
- B. Genty, J. Harbinson, J. M. Briantais & N. R. Baker: *Photosynth. Res.*, 25, 249 (1990).
- J. Ghashghaie & G. Cornic: J. Plant Physiol., 143, 643 (1994).
- S. A. Ruuska, M. R. Badger, T. J. Andrews & S. von Caemmerer: J. Exp. Bot., 51(suppl_1), 357 (2000).
- S. M. Driever & N. R. Baker: *Plant Cell Environ.*, 34, 837 (2011).
- A. Kanazawa & D. M. Kramer: Proc. Natl. Acad. Sci. USA, 99, 12789 (2002).
- 12) T. J. Avenson, J. A. Cruz & D. M. Kramer: Proc. Natl. Acad. Sci. USA, 101, 5530 (2004).
- 13) T. J. Avenson, J. A. Cruz, A. Kanazawa & D. M. Kramer: *Proc. Natl. Acad. Sci. USA*, **102**, 9709 (2005).
- 14) A. Kanazawa, E. Ostendorf, K. Kohzuka, D. Hoh, D. D. Strand, M. Sato-Cruz, L. Savage, J. A. Cruz, N. Fisher, J. E. Froehlich *et al.*: *Front. Plant Sci*, **8**, 719 (2017).

- 15) T. Sejima, H. Hanawa, G. Shimakawa, D. Takagi, Y. Suzuki, H. Fukayama, A. Makino & C. Miyake: *Physiol. Plant.*, **156**, 227 (2016).
- 16) A. N. Tikhonov: Plant Physiol. Biochem., 81, 163 (2014).
- 17) S. Wada, Y. Suzuki & C. Miyake: Plants, 9, 319 (2020).
- 18) K. Kadota, R. Furutani, A. Makino, Y. Suzuki, S. Wada & C. Miyake: *Plants*, 8, 152 (2019).
- G. Shimakawa & C. Miyake: *Plant Direct*, 2, e00073 (2018).
- G. Shimakawa, K. Shaku & C. Miyake: *Front. Microbiol.*, 9, 886 (2018).
- 21) K. Asada: Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601 (1999).
- 22) J. Flexas & H. Medrano: Ann. Bot., 89, 183 (2002).
- 23) D. W. Lawlor & W. Tezara: Ann. Bot., 103, 561 (2009).
- 24) R. F. Sage & D. S. Kubien: *Plant Cell Environ.*, **30**, 1086 (2007).
- 25) T. Sejima, D. Takagi, H. Fukayama, A. Makino & C. Miyake: *Plant Cell Physiol.*, 55, 1184 (2014).
- 26) M. Takahashi & K. Asada: *Plant Cell Physiol.*, 23, 1457 (1982).
- 27) M. Takahashi & K. Asada: Arch. Biochem. Biophys., 226, 558 (1983).
- 28) D. A. Cherepanov, G. E. Milanovsky, A. A. Petrova, A. N. Tikhonov & A. Y. Semenov: *Biochemistry* (Mosc.), 82, 1249 (2017).
- 29) K. Sonoike: Physiol. Plant., 142, 56 (2011).
- M. Zivcak, M. Brestic, K. Kunderllikova, O. Sytar & S. I. Allkahverdiev: *Photosynth. Res.*, **126**, 449 (2015).
- J. Harbinson & C. L. Hedley: *Plant Physiol.*, **103**, 649 (1993).
- 32) C. Klughammer & U. Schreiber: Planta, 192, 261 (1994).
- 33) R. B. Peterson: *Plant Physiol.*, **105**, 349 (1994).
- 34) A. J. Golding & G. N. Johnson: Planta, 218, 107 (2003).
- 35) A. J. Golding, P. Joliot & G. N. Johnson: Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706, 105 (2005).
- 36) C. Miyake, M. Miyata, Y. Shinzaki & K.-I. Tomizawa: Plant Cell Physiol., 46, 629 (2005).
- 37) N. R. Baker, J. Harbinson & D. M. Kramer: *Plant Cell Environ.*, **30**, 1107 (2007).
- 38) M. Suorsa, S. Järvi, M. Grieco, M. Nurmi, M. Pietrzykowska, M. Rantala, S. Kangasjärvi, V. Paakkarinen, M. Tikkanen, S. Jansson *et al.*: *Plant Cell*, **24**, 2934 (2012).
- 39) K. Shaku, G. Shimakawa, M. Hashiguchi & C. Miyake: *Plant Cell Physiol.*, 57, 1443 (2016).
- 40) L. A. Malone, M. S. Proctor, A. Hitchcock, C. N. Hunter & M. P. Johnson: *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1862, 148380 (2021).
- H. Hanawa, K. Ishizaki, K. Nohira, D. Takagi, G. Shimakawa, T. Sejima, K. Shaku, A. Makino & C. Miyake: *Physi*ol. *Plant.*, 161, 138 (2017).
- 42) R. Furutani, A. Makino, Y. Suzuki, S. Wada, G. Shimakawa & C. Miyake: *Plants*, 9, 1761 (2020).
- 43) H. D. Barrs: Annu. Rev. Plant Physiol., 22, 223 (1971).
- 44) M. A. Rose & M. A. Rose: HortScience, 29, 693 (1994).
- 45) R. A. Marenco, K. Siebke, G. D. Farquhar & M. C. Ball: *Funct. Plant Biol.*, 33, 1103 (2006).
- 46) A. Wasserfallen, S. Ragettli, Y. Jouanneau & T. Leisinger: Eur. J. Biochem., 254, 325 (1998).
- 47) R. Hayashi, G. Shimakawa, K. Shaku, S. Shimizu, S. Akimoto, H. Yamamoto, K. Amako, T. Sugimoto, M. Tamoi, A. Makino *et al.*: *Biosci. Biotechnol. Biochem.*, **78**, 384

今山子牛樹

(2014).

- 48) G. Shimakawa, K. Shaku, A. Nishi, R. Hayashi, H. Yamamoto, K. Sakamoto, A. Makino & C. Miyake: *Plant Physi*ol., 167, 472 (2015).
- 49) G. Shimakawa, K. Shaku & C. Miyake: *Plant Physiol.*, 172, 1443 (2016).
- 50) 門屋辰太郎,渡邉吉康,関根康人,田辺英一:日本惑星 科学会誌, 22(4),234 (2013).

プロフィール

古谷 吏侑 (Riu FURUTANI)

<略歴>2020年神戸大学農学部生命機能 科学科卒業/同年同大学大学院修士課程入 学後,現在に至る<研究テーマと抱負>高 等植物における光合成電子伝達制御機構の 解明,研究室単位でなく実際のフィールド での光合成の理解への貢献<趣味>洋楽鑑 賞,洋画鑑賞

三宅 親弘 (Chikahiro MIYAKE) <略歴>1994年京都大学大学院農学研究 科学位取得(農学博士)/1993~1995年日 本学術振興会特別研究員 (京都大学)/ 1996~1997年(財)地球環境産業技術研究 機構/1998~2000年奈良先端科学技術大 学院大学/2001~2002年九州大学大学院 農学研究科/2003~2008年(財)地球環境 産業技術研究機構/2008年~神戸大学大 学院農学研究科,現在に至る<研究テーマ と抱負>光合成生物の酸素(O2)との付 き合い方:活性酸素 (ROS) 生成メカニズ ムとROSの生成抑制メカニズムの全容解 明~P700酸化システムを通して~. 多く の新しい生理現象に出会い、合理的な解釈 に成功すると、これまでの理論の正しさが 矛盾なくより一層裏付けられる.理論の検 証を再現性よくできる,新しい生理現象に 出会いたい、出会えるよう研究を行ってい きたいですね. その答えは光合成生物が もっているはず. そして, この研究の成果 を農学に活かしたいですね<趣味>職漁師 の釣り:テンカラ(毛鉤釣り)で渓に立つ こと. 天川の谷あいに差し込む朝日を背景 にしたキツネと出会ったときの感動は忘れ ませんね. 神々しさに,,,,

Copyright © 2021 公益社団法人日本農芸化学会 DOI: 10.1271/kagakutoseibutsu.59.320

日本農芸化学会

