本研究は、平成18年（2006年）に京都府立農業高等学校（南大門校）で実施された「農業技術講座」において「イチジクの栽培」について考察したものである。栽培の目的は、イチジクの生育状態を調べることである。栽培は、イチジクの種子を用い、 Indoor型の温室で行う。栽培期間は、4月から10月までである。

栽培条件は、温度25℃、湿度90％、光強度3,000 lux（12時間光源）と設定した。栽培期間中、植え物の成長状態を観察すると、イチジクは良好に成長していることが確認された。

栽培後のイチジクの収穫状況を調査すると、収穫量は250gとなり、収穫割合は80％であることが確認された。

栽培の結果、イチジクの成長が良好であり、収穫量も良好であることが確認された。今後は、栽培条件を更に改善し、収穫量を増加させることが課題である。
本研究の意義と展望

微酸性電解水（塩酸溶液（2〜6%）を電解処理した後に希釈した pH 5.0〜6.5、塩素濃度 10〜30 ppm の無臭無味の電解水）は、食品分野で使用されている次亜塩素酸ナトリウムよりも殺菌力が強く、安全、低コストであり、かつ環境への負荷も少ない。各種ウイルスに対しても殺菌効果が確認されている。また、農業分野では、耐性菌が発生せず、植物病原菌の殺菌効果もあるため、農薬代替物として使用されている。低い pH のため、植物の pH 破れ防止効果もある。

本研究は、このような微酸性電解水が培地の長時間殺菌に有効であり、かつ植物の生育を阻害しない（むしろ、生育を促進する）ことを明らかにし、植物バイオテクノロジー分野に応用可能な無滅菌培地調製法を提示したものである。また、通常のガラス容器の代わりに、加熱滅菌できないペットボトルが利用できることも示し、産業廃棄物の有効活用（廃棄物リサイクル）のみならず、室内装飾にも応用できることを示唆した。植物バイオテクノロジーへの実用化的容易さも含め、高校生らしいアイデアに溢れた内容となっている。

実験 10 日間以降（表 1 の細菌汚染の程度や培地の pH の変化はどうであったか、気になるところである。実験個体数や根長の計測法、培地の組成、あるいは適用可能な植物種などにも注意が払われれば、より信頼性の高い研究になったであろう。滅菌操作を要する様々なバイオテクノロジーにも応用可能である。

（文責「化学と生物」編集委員会）